Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 727
Filtrar
2.
Medicine (Baltimore) ; 103(12): e37494, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517995

RESUMO

BACKGROUND: To investigate the effect of concurrent strength combined with endurance training on the lipid and glucose profile of type 2 diabetes mellitus (T2DM) using Meta-analysis. METHODS: The literature was searched from PubMed, Web of Science, EBSCO, and China National Knowledge Infrastructure(CNKI) databases for relevant randomized controlled trials with dates from the date of establishment to June 2023, and the included studies were individually assessed according to the Cochrane Risk of Bias tool in the Cochrane Systematic Assessor's Handbook, and the data were analyzed using RevMan 5.4 analysis software to analyze and process the data. RESULTS: A total of 9 articles were included, including 589 subjects, including 308 in the experimental group and 281 in the control group. The results of Meta analysis showed that concurrent strength combined with endurance training improved TC (SMD = -1.12, 95% CI = [-1.81, -0.44], P < 0.01), TG (SMD = -0.46, 95% CI = [-0.85, -0.07], P < 0.05), LDL-C (SMD = -1.3, 95% CI = [-2.09, -0.50], P < 0.01), HDL-C (SMD = 0.61, 95% CI = [0.05, 1.17], P < 0.05), FBG (SMD = -0.65, 95% CI = [-1.27, -0.04], P < 0.05), HOMA-IR (SMD = -1.23, 95% CI = [-2.40, -0.06], P < 0.05). CONCLUSION: Concurrent strength combined with endurance training has a positive effect on the improvement of lipid and glucose profile in patients with type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Treino Aeróbico , Resistência à Insulina , Humanos , Diabetes Mellitus Tipo 2/terapia , Controle Glicêmico , Lipídeos , Glucose
3.
Horm Mol Biol Clin Investig ; 45(1): 17-25, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38549199

RESUMO

OBJECTIVES: Considering the antioxidant properties of endurance training, this study aimed to investigate the effects of endurance training on serum levels of oxidative stress and structural changes in the kidney tissue of rats exposed to X-ray irradiation. METHODS: In this experimental study, 24 rats weighing 220±20 g were randomly divided into four groups (healthy control, healthy with moderate-intensity continuous training, X-ray control, and X-ray with moderate-intensity continuous training). The two groups of rats were irradiated with 4 Gy X-rays. The two training groups also performed moderate-intensity continuous training for 10 weeks. Twenty-four hour after the last training session, the blood serum of rats was collected and kidney tissue was isolated for stereological studies. RESULTS: In this study, X-ray irradiation of the whole body of rats caused a significant increase in kidney volume, cortex volume, interstitial tissue volume, glomerular volume, and serum level of MDA (p≤0.05), but the medulla volume, volume of proximal tubules (total volume, volume of epithelium, and lumen), volume of distal tubules (total volume, volume of epithelium, and lumen), and the length of the proximal and distal tubules had no effect. In addition, TAC and SOD levels were significantly decreased in the radiation control group. Furthermore, performing endurance training in X-ray-irradiated rats significantly reduced kidney volume, cortex volume, glomerular volume, and serum MDA level (p≤0.05). CONCLUSIONS: Moderate-intensity continuous training can improve the rate of destruction of kidney tissue in rats exposed to X-rays by reducing oxidative stress and subsequently increasing antioxidant capacity.


Assuntos
Antioxidantes , Treino Aeróbico , Humanos , Ratos , Animais , Antioxidantes/farmacologia , Estresse Oxidativo
4.
Front Public Health ; 12: 1302175, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481847

RESUMO

Introduction: This study aimed to investigate the potential of short-term aerobic exercise to mitigate skeletal muscle mitochondrial damage following ambient PM2.5 exposure, and how 12 weeks of endurance training can enhance aerobic fitness to protect against such damage. Methods: Twenty-four male C57BL/6 J mice were split into sedentary (SED, n = 12) and endurance training (ETR, n = 12) groups. The ETR group underwent 12 weeks of training (10-15 m/min, 60 min/day, 4 times/week), confirmed by an Endurance Exercise Capacity (EEC) test. Post-initial training, the SED group was further divided into SSED (SED and sedentary, n = 6) and SPE (SED and PM2.5 + Exercise, n = 6). Similarly, the ETR group was divided into EEX (ETR and Exercise, n = 6) and EPE (ETR and PM2.5 + Exercise, n = 6). These groups underwent 1 week of atmospherically relevant artificial PM2.5 exposure and treadmill running (3 times/week). Following treatments, an EEC test was conducted, and mice were sacrificed for blood and skeletal muscle extraction. Blood samples were analyzed for oxidative stress indicators, while skeletal muscles were assessed for mitochondrial oxidative metabolism, antioxidant capacity, and mitochondrial damage using western blot and transmission electron microscopy (TEM). Results: After 12 weeks of endurance training, the EEC significantly increased (p < 0.000) in the ETR group compared to the SED group. Following a one-week comparison among the four groups with atmospherically relevant artificial PM2.5 exposure and exercise treatment post-endurance training, the EEX group showed improvements in EEC, oxidative metabolism, mitochondrial dynamics, and antioxidant functions. Conversely, these factors decreased in the EPE group compared to the EEX. Additionally, within the SPE group, exercise effects were evident in HK2, LDH, SOD2, and GPX4, while no impact of short-term exercise was observed in all other factors. TEM images revealed no evidence of mitochondrial damage in both the SED and EEX groups, while the majority of mitochondria were damaged in the SPE group. The EPE group also exhibited damaged mitochondria, although significantly less than the SPE group. Conclusion: Atmospherically relevant artificial PM2.5 exposure can elevate oxidative stress, potentially disrupting the benefits of short-term endurance exercise and leading to mitochondrial damage. Nonetheless, increased aerobic fitness through endurance training can mitigate PM2.5-induced mitochondrial damage.


Assuntos
Treino Aeróbico , Condicionamento Físico Animal , Humanos , Masculino , Camundongos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia , Resistência Física/fisiologia , Camundongos Endogâmicos C57BL , Mitocôndrias , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Material Particulado/efeitos adversos
5.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474128

RESUMO

A better understanding of the cellular and molecular mechanisms that are involved in skeletal muscle adaptation to exercise is fundamentally important to take full advantage of the enormous benefits that exercise training offers in disease prevention and therapy. The aim of this study was to elucidate the transcriptional signatures that distinguish the endurance-trained and untrained muscles in young adult males (24 ± 3.5 years). We characterized baseline differences as well as acute exercise-induced transcriptome responses in vastus lateralis biopsy specimens of endurance-trained athletes (ET; n = 8; VO2max, 67.2 ± 8.9 mL/min/kg) and sedentary healthy volunteers (SED; n = 8; VO2max, 40.3 ± 7.6 mL/min/kg) using microarray technology. A second cohort of SED volunteers (SED-T; n = 10) followed an 8-week endurance training program to assess expression changes of selected marker genes in the course of skeletal muscle adaptation. We deciphered differential baseline signatures that reflected major differences in the oxidative and metabolic capacity of the endurance-trained and untrained muscles. SED-T individuals in the training group displayed an up-regulation of nodal regulators of oxidative adaptation after 3 weeks of training and a significant shift toward the ET signature after 8 weeks. Transcriptome changes provoked by 1 h of intense cycling exercise only poorly overlapped with the genes that constituted the differential baseline signature of ETs and SEDs. Overall, acute exercise-induced transcriptional responses were connected to pathways of contractile, oxidative, and inflammatory stress and revealed a complex and highly regulated framework of interwoven signaling cascades to cope with exercise-provoked homeostatic challenges. While temporal transcriptional programs that were activated in SEDs and ETs were quite similar, the quantitative divergence in the acute response transcriptomes implicated divergent kinetics of gene induction and repression following an acute bout of exercise. Together, our results provide an extensive examination of the transcriptional framework that underlies skeletal muscle plasticity.


Assuntos
Treino Aeróbico , Transcriptoma , Masculino , Adulto Jovem , Humanos , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Exercício Físico/fisiologia
6.
J Sports Sci Med ; 23(1): 46-55, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38455445

RESUMO

This study investigated whether the improved performance observed with maximal self-paced single-leg (SL), compared with double-leg (DL) cycling, is associated with enhanced femoral blood flow and/or altered tissue oxygenation. The hyperaemic response to exercise was assessed in younger and older athletes. Power output was measured in 12 older (65 ± 4 y) and 12 younger (35 ± 5 y) endurance-trained individuals performing 2 x 3 min maximal self-paced exercise using SL and DL cycling. Blood flow (BF) in the femoral artery was assessed using Doppler ultrasound and muscle oxygenation was measured using near-infrared spectroscopy on the vastus lateralis. SL cycling elicited a greater power output (295 ± 83 vs 265 ± 70 W, P < 0.001) and peak femoral BF (1749.1 ± 533.3 vs 1329.7 ± 391.7 ml/min, P < 0.001) compared with DL cycling. Older individuals had a lower peak BF in response to exercise (1355.4 ± 385.8 vs 1765.2 ± 559.6 ml/min, P = 0.019) compared with younger individuals. Peak BF in response to exercise was correlated with power output during SL (r = 0.655, P = 0.002) and DL (r = 0.666, P = 0.001) cycling. The greater exercise performance during SL compared with DL cycling may be partly explained by a greater hyperaemic response when reducing active muscle mass. Despite regular endurance training, older athletes had a lower femoral BF in response to maximal self-paced exercise compared with younger athletes.


Assuntos
Treino Aeróbico , Humanos , Idoso , Resistência Física/fisiologia , Exercício Físico/fisiologia , Músculo Quadríceps/diagnóstico por imagem , Atletas
7.
J Hypertens ; 42(4): 735-742, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441186

RESUMO

Previous studies have investigated the effects of different combined training programs involving traditional resistance training and aerobic exercise on hemodynamic parameters and arterial stiffness in older adults. However, little is known about the impact of power training combined with endurance training on these variables in hypertensive older adults. Therefore, this study aimed to investigate the effects of dynamic power training with elastic bands combined with endurance training on arterial stiffness and hemodynamic parameters in hypertensive older adults. Twenty-six participants were randomly assigned to the control group (CG; n = 13) and the intervention group (n = 13). IG participants performed power training with elastic bands combined with endurance training twice a week for 8 weeks. Pulse pressure, central pulse pressure, pulse wave velocity, SBP, DBP, central SBP, and central DBP were assessed before and after 8 weeks using the triple pulse wave velocity method. Pulse pressure, central pulse pressure, pulse wave velocity, SBP, DBP, central SBP, and central DBP significantly improved after 8 weeks of intervention (P < 0.05). These findings indicate that power training with elastic bands combined with endurance training reduces arterial stiffness and significantly improves hemodynamic parameters in older adults diagnosed with grade 1 hypertension. In addition, underscores the potential of this approach as a promising strategy for the management of hypertension in older adults.


Assuntos
Treino Aeróbico , Hipertensão , Treinamento de Força , Humanos , Idoso , Análise de Onda de Pulso , Hipertensão/terapia , Pressão Sanguínea
8.
Sci Rep ; 14(1): 4102, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374149

RESUMO

The effects of long-term omega-3 polyunsaturated fatty acid (n-3 PUFA) supplementation during endurance training on tryptophan (Trp) metabolism and mental state of healthy individuals have not been evaluated so far. Concentrations of plasma Trp, its metabolites and IL-6 were assessed in 26 male runners before and after a 12-week training program combined with supplementation of n-3 PUFAs (O-3 + TRAIN group) or medium chain triglycerides (MCTs; TRAIN group). After the 12-week program participants' mood before and after stress induction was also assessed. The effects of the same supplementation protocol were evaluated also in 14 inactive subjects (O-3 + SEDEN group). Concentrations of 3-hydroxykynurenine (3-HK) and picolinic acid (PA) significantly increased only in the O-3 + TRAIN group (p = 0.01; [Formula: see text] = 0.22 and p = 0.01; [Formula: see text]= 0.26). Favorable, but not statistically significant changes in the concentrations of kynurenic acid (KYNA) (p = 0.06; [Formula: see text]= 0.14), xanthurenic acid (XA) (p = 0.07; [Formula: see text]= 0.13) and 3-hydroxyanthranilic acid (3-HAA) (p = 0.06; [Formula: see text]= 0.15) and in the ratio of neurotoxic to neuroprotective metabolites were seen also only in the O-3 + TRAIN group. No changes in mood and IL-6 concentrations were observed in either group. Supplementation with n-3 PUFAs during endurance training has beneficial effects on Trp's neuroprotective metabolites.Trial registry: This study was registered at ClinicalTrials.gov with identifier NCT05520437 (14/07/2021 first trial registration and 2018/31/N/NZ7/02962 second trial registration).


Assuntos
Treino Aeróbico , Ácidos Graxos Ômega-3 , Humanos , Masculino , Ácidos Graxos Ômega-3/metabolismo , Triptofano/metabolismo , Interleucina-6 , Triglicerídeos , Suplementos Nutricionais
9.
Scand J Med Sci Sports ; 34(2): e14576, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38339790

RESUMO

INTRODUCTION: High exercise adherence is a key factor for effective exercise programmes. However, little is known about predictors of exercise adherence to a multimodal machine-based training in older retirement home residents. AIMS: To assess exercise adherence and potential predictors of adherence. Furthermore, to evaluate user acceptance of the multimodal training and the change in exercise self-efficacy. METHODS: In this sub-analysis of the bestform-F study, a total of 77 retirement home residents ≥65 years (mean age: 85.6 ± 6.6 years, 77.9% female) participated in a 6-month machine-based resistance, coordination and endurance training. Attendance to the training was documented for each training session. To identify potential predictors a multiple linear regression model was fitted to the data. Analyzed predictors included age, sex, body mass index (BMI), physical function, exercise self-efficacy, and physical activity history. Different domains of user acceptance (e.g. safety aspects, infrastructure) and exercise self-efficacy were assessed by a questionnaire and the exercise self-efficacy scale (ESES), respectively. RESULTS: Mean exercise adherence was 67.2% (median: 74.4%). The regression model (R2 = 0.225, p = 0.033) revealed that the 6-minute walk test (6-MWT) at baseline significantly predicted exercise adherence (ß: 0.074, 95% confidence interval (CI): 0.006-0.142, p = 0.033). Different user domains were rated at least as good by 83.9%-96.9% of participants, reflecting high acceptance. No statistically significant change was found for exercise self-efficacy over 6 months (mean change: 0.47 ± 3.08 points, p = 0.156). CONCLUSION: Retirement home residents attended more than two thirds of offered training sessions and physical function at baseline was the key factor for predicting adherence. User acceptance of the training devices was highly rated. These findings indicate good potential for implementation of the exercise programme.


Assuntos
Treino Aeróbico , Treinamento de Força , Humanos , Feminino , Idoso , Idoso de 80 Anos ou mais , Masculino , Aposentadoria , Exercício Físico , Terapia por Exercício
10.
J Physiol Sci ; 74(1): 8, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331728

RESUMO

The athlete's paradox phenomenon involves the accumulation of intramuscular triglycerides (IMTG) in both insulin-resistant and insulin-sensitive endurance athletes. Nevertheless, a complete understanding of this phenomenon is yet to be achieved. Recent research indicates that lactate, a common byproduct of physical activity, may increase the accumulation of IMTG in skeletal muscle. This is achieved through the activation of G protein-coupled receptor 81 (GPR81) leads to the suppression of the cyclic adenosine monophosphate-protein kinase A (cAMP-PKA) pathway. The mechanism accountable for the increase in mitochondrial content in skeletal muscle triggered by lactate remains incomprehensible. Based on current research, our objective is to explore the role of the GPR81-inhibited cAMP-PKA pathway in the aggregation of IMTG and the increase in mitochondrial content as a result of prolonged exercise. The GPR81-cAMP-PKA-signaling pathway regulates the buildup of IMTG caused by extended periods of endurance training (ET). This is likely due to a decrease in proteins related to fat breakdown and an increase in proteins responsible for fat production. It is possible that the GPR81-cAMP-PKA pathway does not contribute to the long-term increase in mitochondrial biogenesis and content, which is induced by chronic ET. Additional investigation is required to explore the possible hindrance of the mitochondrial biogenesis and content process during physical activity by the GPR81-cAMP-PKA signal.


Assuntos
Treino Aeróbico , Humanos , Ratos , Animais , Triglicerídeos , Resistência Física/fisiologia , Músculo Esquelético/metabolismo , Insulina/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Lactatos/metabolismo
11.
Mol Biol Rep ; 51(1): 111, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38227208

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is characterized by progressive cognitive decline and a reduction in hippocampal neurotrophins, in which trimethytin (TMT) infusion causes tangles and neuronal dysfunction, creating an AD-like model in rats. Previous studies have demonstrated that crocin, which has anti-inflammatory properties, can enhance learning, memory acquisition, and cognitive behavior. This study aimed to assess the combined impact of aerobic exercise and crocin on memory, learning, and hippocampal Tau and neurotrophins gene expression in AD-like model rats. METHODS: Forty male Sprague Dawley rats were randomly divided into five groups: (1) healthy control, (2) Alzheimer's control, (3) endurance training, (4) crocin consumption, and (5) endurance training + crocin. Alzheimer's induction was achieved in groups 2-5 through intraperitoneal injection of 8 mg/kg TMT. Rats in groups 3 and 5 engaged in treadmill running three sessions per week, 15-30 min per session, at a speed of 15-20 m/min for eight weeks, and groups 4 and 5 received daily crocin supplementation of 25 mg/kg. RESULTS: Alzheimer's induction with TMT showed significant reduction in memory, learning, NGF, BDNF, and TrkB gene expression, and increase in tau gene expression (all p < 0.05). Notably, endurance training and crocin consumption separately significantly increased memory, learning, NGF, BDNF, and TrkB gene expression while significantly decreasing tau gene expression (all p < 0.05). Importantly, combined endurance training with crocin yielded the most profound effects on memory (p = 0.001), NGF (p = 0.002), BDNF (p = 0.001), and TrkB (p = 0.003) gene expression (p < 0.005), as well as a reduction in tau gene expression (p = 0.001). CONCLUSION: These findings underscore the possible impact of endurance training, particularly when coupled with crocin, on enhancing memory, learning, and neurotrophin gene expression and reducing tau gene expression in Alzheimer's rats. These results highlight the possibility of synergistic interventions for improved therapeutic outcomes.


Assuntos
Doença de Alzheimer , Carotenoides , Treino Aeróbico , Masculino , Ratos , Animais , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Fator Neurotrófico Derivado do Encéfalo/genética , Ratos Sprague-Dawley , Expressão Gênica
12.
J Sports Med Phys Fitness ; 64(1): 66-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37902805

RESUMO

BACKGROUND: Hypoxia is an environmental condition that occurs in sports performed at high altitude. Adaptation to hypoxia is accompanied by changes in body composition and cardiac function that could impair sport performance in altitude. These changes concern mainly to a reduction in muscle mass and an increased heart rate. In this context, a resistance training protocol in a normobaric hypoxia chamber has been implemented. Therefore, the aim of this study was to study the changes in body composition and cardiovascular variables after a training period in intermittent hypoxia. METHODS: A single-blind experimental study was carried out for 3 weeks. Thirty-two participants were distributed in a control group resistance training in normoxia (N) at sea level and an experimental group resistance training in intermittent hypoxia (IH) between a simulated 5100-5800m during 15 sessions with a controlled diet. Anthropometry according to ISAK was used to determine body composition. Systolic and diastolic blood pressures and other cardiovascular parameters were monitored. RESULTS: IH showed a reduction in body fat (from 8.9±1.9% to 8.2±1.7%) compared to N (from 8.4±1.5% to 8.1±1.4%) (P<0.001). In addition, significant changes in blood pressure were observed at the end compared to the beginning of the intervention in the IH (from 124.7±10.2 to 116.9±8.3 mmHg and 68.3±8.8 to 62.4±5.7 mmHg in systolic a diastolic blood pressure respectively). In addition, resting heart rate was significantly reduced in IH. However, partial oxygen saturation displayed no changes in both groups. CONCLUSIONS: Altogether, the training protocol in intermittent hypoxia performed in the present report allowed to adjust body weight through fat mass reduction but maintaining muscle mass. In addition, a decrease in blood pressure and basal heart rate was observed.


Assuntos
Treino Aeróbico , Treinamento de Força , Humanos , Pressão Sanguínea/fisiologia , Método Simples-Cego , Hipóxia , Tecido Adiposo
13.
J Sports Med Phys Fitness ; 64(3): 229-235, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059653

RESUMO

BACKGROUND: The study aimed to analyze the effect of respiratory muscle endurance training (RMT) on performance and respiratory function in professional road cyclists during the off-season period. METHODS: Twenty professional road cyclists from the Czech Republic were divided into the control (CON) (N.=10) and the RMT (N.=10) groups. Cyclists from the RMT group accomplished 30 sessions over 10 weeks. Performance in the incremental cycling test and respiratory capacity via test were assessed before and after 10 weeks in both groups. The comparison between and within the groups was performed, together with effect size and delta % (P<0.05). RESULTS: Significant effects on respiratory function during the exercise, on lung volume utilization at 90% of VO2max (TV-90%) and maximal voluntary ventilation (MVV) were found in RMT compared to the CON group, with a moderate effect size (0.71 and 0.61), and improvements of 13% and 14%, respectively. Parameters of performance in the cycling protocol and respiratory function at rest presented better values in the RMT group, however with no significance and in minor magnitude. CONCLUSIONS: Using RMT during off-season benefits professional road cyclists by improving the major efficiency of respiratory function during progressive efforts. Therefore, the protocol of RMT could be used as an ergogenic aid during this period in order to maintain respiratory adaptations, optimizing the pre-season training. Adjustments can be made to improve the parameters outcomes.


Assuntos
Treino Aeróbico , Resistência Física , Humanos , Resistência Física/fisiologia , Estações do Ano , Músculos Respiratórios/fisiologia , Respiração , Exercícios Respiratórios/métodos , Ciclismo/fisiologia
15.
Eur J Appl Physiol ; 124(1): 309-315, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37495864

RESUMO

PURPOSE: To quantify the effects of prolonged cycling on the rate of ventilation ([Formula: see text]), frequency of respiration (FR), and tidal volume (VT) associated with the moderate-to-heavy intensity transition. METHODS: Fourteen endurance-trained cyclists and triathletes (one female) completed an assessment of the moderate-to-heavy intensity transition, determined as the first ventilatory threshold (VT1), before (PRE) and after (POST) two hours of moderate-intensity cycling. The power output, [Formula: see text], FR, and VT associated with VT1 were determined PRE and POST. RESULTS: As previously reported, power output at VT1 significantly decreased by ~ 10% from PRE to POST. The [Formula: see text] associated with VT1 was unchanged from PRE to POST (72 ± 12 vs. 69 ± 13 L.min-1, ∆ - 3 ± 5 L.min-1, ∆ - 4 ± 8%, P = 0.075), and relatively consistent (within-subject coefficient of variation, 5.4% [3.7, 8.0%]). The [Formula: see text] associated with VT1 was produced with increased FR (27.6 ± 5.8 vs. 31.9 ± 6.5 breaths.min-1, ∆ 4.3 ± 3.1 breaths.min-1, ∆ 16 ± 11%, P = 0.0002) and decreased VT (2.62 ± 0.43 vs. 2.19 ± 0.36 L.breath-1, ∆ - 0.44 ± 0.22 L.breath-1, ∆ - 16 ± 7%, P = 0.0002) in POST. CONCLUSION: These data suggest prolonged exercise shifts ventilatory parameters at the moderate-to-heavy intensity transition, but [Formula: see text] remains stable. Real-time monitoring of [Formula: see text] may be a useful means of assessing proximity to the moderate-to-heavy intensity transition during prolonged exercise and is worthy of further research.


Assuntos
Treino Aeróbico , Exercício Físico , Humanos , Feminino , Respiração , Pulmão , Volume de Ventilação Pulmonar , Teste de Esforço , Consumo de Oxigênio
16.
Int J Sports Med ; 45(3): 245-252, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37793434

RESUMO

In this study, we aimed to examine the impact of high endurance training on vascular health parameters and immune-endocrine responses against modified low-density lipoprotein (LDL) particles. This observational, cross-sectional study included high endurance-trained and healthy non-trained subjects. Vascular ultrasound was used to assess vascular health parameters based on carotid intima-media thickness and endothelial function (flow-mediated dilation). Enzyme-linked immunosorbent assays were used to measure interleukin (IL)-8 and IL-10, autoantibody isotypes anti-oxidized LDL (oxLDL) and anti-apolipoprotein B (ApoB-D) peptide. Plasma levels of the corticosterone and 17 α-hydroxyprogesterone hormones were analyzed by mass spectrometry. This study enrolled 96 subjects, of whom 44 were high endurance trained and 52 were healthy non-trained individuals. Smaller carotid intima-media thickness values were observed in the high-endurance trained than in the healthy non-trained males, while no differences were observed between female groups. Flow-mediated dilation measurements did not differ by training or sex. The humoral immune responses to IgG anti-oxLDL and IgM anti-ApoB-D autoantibodies showed an isotype imbalance between the high-endurance trained and the non-trained groups. Immunoendocrine parameters showed inverse correlations between 17 α-hydroxyprogesterone concentrations and carotid intima-media thickness measurements. Direct correlations were found between IL-10 concentrations and flow-mediated dilation measurements. Chronic high-endurance exercise modulates immune-endocrine and vascular health parameters, in a sex-dependent manner.


Assuntos
Espessura Intima-Media Carotídea , Treino Aeróbico , Masculino , Humanos , Feminino , Interleucina-10 , Estudos Transversais , 17-alfa-Hidroxiprogesterona
17.
Eur J Prev Cardiol ; 31(4): 415-424, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-37821393

RESUMO

AIMS: Detraining refers to a loss of training adaptations resulting from reductions in training stimulus due to illness, injury, or active recovery breaks in a training cycle and is associated with a reduction in left ventricular mass (LVM). The purpose of this study was to conduct a systematic review and meta-analysis to determine the influence of detraining on LVM in endurance-trained, healthy individuals. METHODS AND RESULTS: Using electronic databases (e.g. EMBASE and MEDLINE), a literature search was performed looking for prospective detraining studies in humans. Inclusion criteria were adults, endurance-trained individuals with no known chronic disease, detraining intervention >1 week, and pre- and post-detraining LVM reported. A pooled statistic for random effects was used to assess changes in LVM with detraining. Fifteen investigations (19 analyses) with a total of 196 participants (ages 18-55 years, 15% female) met inclusion criteria, with detraining ranging between 1.4 and 15 weeks. The meta-analysis revealed a significant reduction in LVM with detraining (standardized mean difference = -0.586; 95% confidence interval = -0.817, -0.355; P < 0.001). Independently, length of detraining was not correlated with the change in LVM. However, a meta-regression model revealed length of the detraining, when training status was accounted for, was associated with the reduction of LVM (Q = 15.20, df = 3, P = 0.0017). Highly trained/elite athletes had greater reductions in LVM compared with recreational and newly trained individuals (P < 0.01). Limitations included relatively few female participants and inconsistent reporting of intervention details. CONCLUSION: In summary, LVM is reduced following detraining of one week or more. Further research may provide a greater understanding of the effects of sex, age, and type of detraining on changes in LVM in endurance-trained individuals.


In healthy, endurance-trained individuals, detraining results in significant reductions in left ventricular mass. When accounting for training status, the length of the detraining period is positively associated with reductions in left ventricular mass. Limited research on this topic hinders the ability to assess sex differences or the impact of the type of detraining (i.e. only activities of daily living vs. reduced training load) on the response to detraining.


Assuntos
Treino Aeróbico , Adulto , Humanos , Feminino , Masculino , Estudos Prospectivos , Atletas , Resistência Física
18.
Biomed Pharmacother ; 170: 116020, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38147733

RESUMO

INTRODUCTION: Mitochondrial dysfunction causes myocardial disease. This study investigated the effects of MitoQ alone and in combination with moderate-intensity endurance training (EX) on cardiac function and content and mRNA expression of several proteins involved in mitochondrial quality control in isoproterenol (ISO)-induced heart injuries METHODS: Seven groups of CTL, ISO, ISO-EX, ISO-MitoQ-125, ISO-MitoQ-250, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 were assigned. Rats were trained on a treadmill, and the MitoQ groups received MitoQ in drinking water for 8 weeks, starting one week after the induction of heart injury. Arterial pressure and cardiac function indices, mRNA expression, protein content, oxidant and antioxidant markers, fibrosis, and histopathological changes were assessed by physiograph, Real-Time PCR, immunofluorescence, calorimetry, Masson's trichrome, and H&E staining, respectively. RESULTS: The impacts of MitoQ-125, EX+MitoQ-125, and EX+MitoQ-250 on arterial pressure and left ventricular systolic pressure were higher than MitoQ-250 or EX alone. ± dp/dt max were higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-MitoQ-125 and ISO-MitoQ-250 groups, respectively. Histopathological scores and fibrosis decreased in ISO-EX, ISO-MitoQ-125, ISO-EX+MitoQ-125, and ISO-EX+MitoQ-250 groups. The restoration of MFN2, PINK-1, and FIS-1 changes was higher in ISO-EX+MitoQ-125 and ISO-EX+MitoQ-250 than ISO-EX, ISO-MitoQ-125 and ISO-MitoQ-250 groups. The expression of MFN2 and PINK-1 was lower in ISO-MitoQ-125 and ISO-EX+MitoQ-125 than ISO and CTL groups. The expression of FIS-1 in ISO-EX and ISO-EX+MitoQ-250 increased compared to CTL and ISO groups. MDA decreased in ISO-MitoQ-125 and ISO-EX+MitoQ-125 groups. CONCLUSION: Exercise and MitoQ combination have additive effects on cardiac function by modulating cardiac mitochondria quality. This study provided a possible therapy to treat heart injuries.


Assuntos
Treino Aeróbico , Traumatismos Cardíacos , Humanos , Ratos , Animais , Isoproterenol/toxicidade , Dinâmica Mitocondrial , Mitofagia , Mitocôndrias Cardíacas , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/prevenção & controle , Suplementos Nutricionais , Fibrose , RNA Mensageiro
19.
J Neurophysiol ; 131(2): 166-175, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38116611

RESUMO

Persistent inward currents (PICs) increase the intrinsic excitability of α-motoneurons. The main objective of this study was to compare estimates of α-motoneuronal PICs between inactive, chronic resistance-trained, and chronic endurance-trained young individuals. We also aimed to investigate whether there is a relationship in the estimates of α-motoneuronal PIC magnitude between muscles. Estimates of PIC magnitude were obtained in three groups of young individuals: resistance-trained (n = 12), endurance-trained (n = 12), and inactive (n = 13). We recorded high-density surface electromyography (HDsEMG) signals from tibialis anterior (TA), gastrocnemius medialis (GM), soleus (SOL), vastus medialis (VM), and vastus lateralis (VL). Then, signals were decomposed with convolutive blind source separation to identify motor unit (MU) spike trains. Participants performed triangular isometric contractions to a peak of 20% of their maximum voluntary contraction. A paired-motor-unit analysis was used to calculate ΔF, which is assumed to be proportional to PIC magnitude. Despite the substantial differences in physical training experience between groups, we found no differences in ΔF, regardless of the muscle. Significant correlations of estimates of PIC magnitude were found between muscles of the same group (VL-VM, SOL-GM). Only two correlations (out of 8) between muscles of different groups were found (TA-GM and VL-GM). Overall, our findings suggest that estimates of PIC magnitude from lower-threshold MUs at low contraction intensities in the lower limb muscles are not influenced by physical training experience in healthy young individuals. They also suggest muscle-specific and muscle group-specific regulations of the estimates of PIC magnitude.NEW & NOTEWORTHY Chronic resistance and endurance training can lead to specific adaptations in motor unit activity. The contribution of α-motoneuronal persistent inward currents (PICs) to these adaptations is currently unknown in healthy young individuals. Therefore, we studied whether estimates of α-motoneuronal PIC magnitude are higher in chronically trained endurance- and resistance-trained individuals. We also studied whether there is a relationship between the estimates of α-motoneuronal PIC magnitude of different lower limb muscles.


Assuntos
Treino Aeróbico , Masculino , Humanos , Músculo Esquelético/fisiologia , Eletromiografia , Músculo Quadríceps , Contração Isométrica/fisiologia , Extremidade Inferior
20.
MMW Fortschr Med ; 165(20): 30-31, 2023 11.
Artigo em Alemão | MEDLINE | ID: mdl-37973739
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...